
PC-PG: Policy Cover Directed Exploration for
Provable Policy Gradient Learning

Alekh Agarwal
Microsoft Research, Redmond
alekha@microsoft.com

Sham Kakade
University of Washington and Microsoft Research NYC

sham@cs.washington.edu

Mikael Henaff
Facebook AI Research
mikaelhenaff@fb.com

Wen Sun
Cornell University

ws455@cornell.edu

Abstract

Direct policy gradient methods for reinforcement learning are a successful approach
for a variety of reasons: they are model free, they directly optimize the performance
metric of interest, and they allow for richly parameterized policies. Their primary
drawback is that, by being local in nature, they fail to adequately explore the
environment. In contrast, while model-based approaches and Q-learning can, at
least in theory, directly handle exploration through the use of optimism, their ability
to handle model misspecification and function approximation is far less evident.
This work introduces the the POLICY COVER GUIDED POLICY GRADIENT (PC-
PG) algorithm, which provably balances the exploration vs. exploitation tradeoff
using an ensemble of learned policies (the policy cover). PC-PG enjoys polynomial
sample complexity and run time for both tabular MDPs and, more generally,
linear MDPs in an infinite dimensional RKHS. Furthermore, PC-PG also has strong
guarantees under model misspecification that go beyond the standard worst case `∞
assumptions; these include approximation guarantees for state aggregation under
an average case error assumption, along with guarantees under a more general
assumption where the approximation error under distribution shift is controlled.
We complement the theory with empirical evaluation across a variety of domains
in both reward-free and reward-driven settings.

1 Introduction

Policy gradient methods are a successful class of Reinforcement Learning (RL) methods, as they are
amenable to parametric policy classes, including neural policies [55, 56]), and they directly optimizing
the cost function of interest. While these methods have a long history in the RL literature [33, 37, 62,
68], only recently have their theoretical convergence properties been established: roughly when the
objective function has wide coverage over the state space, global convergence is possible [1, 3, 12, 27].
In other words, the assumptions in these works imply that the state space is already well-explored.
Conversely, without such coverage (and, say, with sparse rewards), policy gradients often suffer from
the vanishing gradient problem.

With regards to exploration, at least in the tabular setting, there is an established body of algorithms
which provably explore in order to achieve sample efficient reinforcement learning, including model
based methods [9, 13, 20, 29, 35, 36], model free approaches such as Q-learning [22, 31, 40,
60], Thompson sampling [5, 47, 51], and, more recently, policy optimization approaches [17, 24].
There are also a number of provable reinforcement learning algorithms balancing exploration and
exploitation for MDPs with linearly parameterized dynamics, including [7, 17, 30, 32, 70–72].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

The motivation for our work is to develop algorithms and guarantees which are more robust to
violations in the underlying modeling assumptions. Indeed, the primary practical motivation for policy
gradient methods is that the overall methodology is disentangled from modeling (and Markovian)
assumptions, since they are an “end-to-end” approach, directly optimizing the cost function of interest.
These practical considerations are supported by a body of theoretical results, both on direct policy
optimization approaches [10, 34, 53, 54] and more recently on policy gradient approaches [3], which
show that such incremental policy improvement approaches are amenable to function approximation
and violations of modeling assumptions, under certain coverage assumptions over the state space.

This work focuses on how policy gradient methods can be extended to handle exploration, while
also retaining their favorable properties with regards to how they handle function approximation
and model misspecification. The practical relevance of answering these questions is evident by the
growing body of empirical techniques for exploration which combine policy gradient methods with
exploration bonuses such as pseudocounts [11], dynamics model errors [49], or random network
distillation (RND) [16].

Our Contributions. This work introduces the POLICY COVER GUIDED POLICY GRADIENT
algorithm (PC-PG), a direct, model-free, policy optimization approach which addresses exploration
through the use of a learned ensemble of policies, the latter provides a policy cover over the state
space. The use of a learned policy cover addresses exploration, and also addresses what is known
as the “catastrophic forgetting” problem in policy gradient approaches (which use reward bonuses);
while the on-policy nature avoids the “delusional bias” inherent to Bellman backup-based approaches,
where approximation errors due to model misspecification amplify (see [42] for discussion).

It is a conceptually different approach from the predominant prior (and provable) RL algorithms,
which are either model-based — variants of UCB [9, 13, 29, 36] or based on Thompson sampling [5,
51] — or model-free and value based, such as Q-learning [31, 60]. Our work adds policy optimization
methods to this list, as a direct alternative: the use of learned covers permits a a model-free approach
by allowing the algorithm to plan in the real world, using the cover for initializing the underlying
policy optimizer. We remark that only a handful of prior (provable) exploration algorithms [31, 60]
are model-free in the tabular setting, and these are largely value based.

At a high-level, we design an exploratory actor-critic method which performs critic estimation using
linear functions in a given featurization �(s, a) for a state s and action a. Informally, our main
result shows that for any policy ⇡, we can compete with V ⇡(s0) in the initial state s0, as long
as we can estimate the critic functions for all actor policies discovered by the algorithm up to a
small mean squared error, where the error is measured under the state-action distribution induced
by the comparison policy ⇡. While this distribution is unavailable to the algorithm, and the error
cannot be explicitly reduced to zero by collecting more samples for fitting the critic, the assumption
provides an expressivity condition on the features �. The condition is directly inspired by the recent
characterization of transfer error under distribution shift as a key quantity underlying the convergence
of policy optimization methods with function approximation by Agarwal et al. [3], and our results
extend these ideas to the exploration setting.

This abstract result provides a string of striking corollaries for linear MDPs [32], state aggregation,
and other settings, both when the modeling assumptions hold exactly and approximately. In the exact
case, PC-PG is provably sample and computationally efficient for both tabular and linear MDPs.
In the approximate case, the key upshot of our theory is to permit the use of certain average case
error measures instead of `∞ conditions on misspecification in several prior works. Some of the key
results that we establish include:

• RKHS in Linear MDPs: For the linear MDPs proposed by [32], our results hold when the
linear MDP features live in an infinite dimensional Reproducing Kernel Hilbert Space (RKHS)
(Theorem 4.1). It is not immediately evident how to extend the prior work on linear MDPs
(e.g. [32]) to this setting (due to concentration issues with data re-use).

• Bounded transfer error and state aggregation: When specialized to a state aggregation setting,
we show that PC-PG provides a different approximation guarantee in comparison to prior works.
In particular, the aggregation need only be good locally, under the visitations of the comparison
policy (Theorem 4.2). More generally, we analyze PC-PG under a notion of a small transfer error
in critic fitting [3]—a condition on the error of a best on-policy critic under a comparison policy’s

2

state distribution—which generalizes the special case of state aggregation, and show that PC-PG
enjoys a favorable sample complexity whenever this transfer error is small (Theorem 4.3).

• Empirical evaluation: We provide experiments showing the viability of PC-PG in settings where
prior bonus based approaches such as Random Network Distillation [16] do not recover optimal
policies with high probability. Our experiments show our basic approach complements and
leverages existing deep learning approaches, implicitly also verifying the robustness of PC-PG
outside the regime where the sample complexity bounds provably hold.

2 Setting

A Markov Decision Process (MDP) M = (S,A, P, r, �, s0) is specified by a state space S; an action
space A; a transition model P : S × A → �(S) (where �(S) denotes a distribution over states),
a reward function r : S × A → [0, 1], a discount factor � ∈ [0, 1), and a starting state s0. We
assume A is discrete and denote A = |A|. Our results generalize to a starting state distribution
µ0 ∈ �(S) but we use a single starting state s0 to emphasize the need to perform exploration. A
policy ⇡ : S → �(A) specifies a decision-making strategy in which the agent chooses actions based
on the current state, i.e., a ∼ ⇡(·|s).

The value function V ⇡(·, r) : S → R is defined as the expected discounted sum of fu-
ture rewards, under reward function r, starting at state s and executing ⇡, i.e. V ⇡(s; r) :=
E [

∑∞
t=0 �

tr(st, at)|⇡, s0 = s], where the expectation is taken with respect to the randomness of the
policy and environment M. The state-action value function Q⇡(·, ·; r) : S × A → R is defined as
Q⇡(s, a; r) := E [

∑∞
t=0 �

tr(st, at)|⇡, s0 = s, a0 = a].

We define the discounted state-action distribution d⇡
s

of a policy ⇡: d⇡
s0(s, a) := (1 −

�)
∑∞

t=0 �
tPr⇡(st = s, at = a|s0 = s′), where Pr⇡(st = s, at = a|s0 = s′) is the probability that

st = s and at = a, after we execute ⇡ from t = 0 onwards starting at state s′ in model M. Similarly,
we define d⇡

s0,a0(s, a) as: d⇡
s0,a0(s, a) := (1 − �)

∑∞
t=0 �

tPr⇡(st = s, at = s|s0 = s′, a0 = a′). For
any state-action distribution ⌫, we write d⇡

⌫
(s, a) :=

∑
(s0,a0)∈S×A ⌫(s′, a′)d⇡

s0,a0(s, a). For ease of
presentation, we assume that the agent can reset to s0 at any point in the trajectory.1 We denote
d⇡
⌫
(s) =

∑
a
d⇡
⌫
(s, a). The goal of the agent is to find a policy ⇡ that maximizes the expected

value from the starting state s0, i.e. the optimization problem is: max⇡ V ⇡(s0), where the max
is over some policy class. For completeness, we specify a d⇡

⌫
-sampler and an unbiased estimator

of Q⇡(s, a; r) in Algorithm 1, which are standard in discounted MDPs. The d⇡
⌫

sampler samples
(s, a) i.i.d from d⇡

⌫
, and the Q⇡ sampler returns an unbiased estimate of Q⇡(s, a; r) for a given triple

(s, a, r) by a single roll-out from (s, a).

We assume access to a feature map �(s, a) for each s ∈ S and a ∈ A, with ‖�(s, a)‖ ≤ 1, and ‖ · ‖
is a norm in some Reproducing Kernel Hilbert Space (RKHS). The features are primarily used for
fitting the critic functions Q⇡ in our algorithm, though some of our theoretical results also make
stronger assumptions on the MDP dynamics in terms of � (e.g., linear MDP).

Notation. When clear from context, we write d⇡(s, a) and d⇡(s) to denote d⇡
s0
(s, a) and d⇡

s0
(s)

respectively, where s0 is the starting state in our MDP. For iterative algorithms which obtain policies
at each episode, we let V n,Qn, An and dn denote the corresponding quantities associated with
episode n. For a vector v, we denote ‖v‖2 =

√∑
i
v2
i
, ‖v‖1 =

∑
i
|vi|, and ‖v‖∞ = maxi |vi|. For

a matrix V , we define ‖V ‖2 = sup
x:‖x‖2≤1 ‖V x‖2, and det(V) as the determinant of V . We use

Uniform(A) (in short UnifA) to represent a uniform distribution over the set A.

3 The PC-PG Algorithm

To motivate the algorithm, first consider the original objective function: max⇡∈⇧ V ⇡(s0; r), where r
is the true reward function. Simply doing policy gradient ascent on this objective function may easily
lead to poor stationary points due to lack of coverage (i.e. lack of exploration). In such cases, a more
desirable objective function is of the form:

A wide coverage objective: max
⇡∈⇧

Es0,a0∼⇢cov [Q
⇡(s0, a0; r)] (1)

1This can be replaced with a termination at each step with probability 1� �.

3

Algorithm 1 d⇡ sampler and Q⇡ estimator
1: function d⇡

⌫
-SAMPLER

2: Input: ⌫ ∈ �(S × A),⇡, r(s, a)
3: Sample s0, a0 ∼ ⌫
4: Execute ⇡ from s0, a0; at any step t with (st, at), terminate the episode with probability 1 − �
5: Return: st, at
6: end function
7: function Q⇡ -ESTIMATOR
8: Input: current state-action (s, a), reward r(s, a), ⇡
9: Execute ⇡ from (s0, a0) = (s, a); at step t with (st, at), terminate with probability 1 − �

10: Return: Q̂⇡(s, a) =
∑

t

i=0 r(si, ai) where (s0, a0) = (s, a)
11: end function

Algorithm 2 POLICY COVER GUIDED POLICY GRADIENT (PC-PG)
1: Input: iterations N , threshold �, regularizer �
2: Initialize ⇡0(a|s) to be uniform
3: for episode n = 0, . . . N − 1 do
4: Estimate the covariance of ⇡n as ⌃̂n =

∑
K

i=1 �(si, ai)�(si, ai)
(/K with {si, ai}Ki=1 ∼ dn

5: Estimate the covariance of the policy cover as ⌃̂n

cov :=
∑

n

i=0 ⌃̂
i + �I

6: Set the exploration bonus bn to reward infrequently visited state-action under ⇢ncov (3)

bn(s, a) =
1{(s, a) : �(s, a)((⌃̂n

cov)
−1�(s, a) ≥ �}

1 − �
. (2)

7: Update ⇡n+1 = NPG-Update(⇢ncov, b
n) (Algorithm 3)

8: end for

where ⇢cov is some initial state-action distribution which has wider coverage over the state space. As
argued in [3, 34, 53, 54], wide coverage initial distributions ⇢cov are critical to the success of policy
optimization methods. However, in the RL setting, our agent can only start from s0. Concretely,
for the linear function approximation in terms of a given feature map � that we employ here, from
Theorem 6.1 of Agarwal et al. [3] (see also Abbasi-Yadkori et al. [1, 2]), we know that the coverage
of ⇢cov can be measured in terms of the smallest eigenvalue of its feature covariance matrix,2 an
object which plays a central role in our algorithm design.

The idea of our iterative algorithm, PC-PG (Algorithm 2), is to successively improve both the current
policy ⇡ and the coverage distribution ⇢cov. At episode n, we have n+ 1 previous policies ⇡0, . . .⇡n.
Each of these policies ⇡i induces a distribution di := d⇡

i

over the state-action space. Define ⇢ncov as:

⇢ncov(s, a) =
n∑

i=0

di(s, a)/(n+ 1) (3)

Intuitively, ⇢ncov reflects the coverage the algorithm has over the state-action space at the start of the
n-th episode. PC-PG then uses ⇢ncov in the previous objective (1) with two modifications: PC-PG
modifies the instantaneous reward function r with a bonus bn in order to search for a policy ⇡n+1

which covers a novel part of space. It also modifies the policy class from ⇧ to ⇧bonus, where all
policies ⇡ ∈ ⇧bonus are constrained to simply take a random rewarding action for those states where
the bonus is already large (see Eq 4 in Alg. 3). With this, PC-PG’s objective at the n-th episode is:
max⇡∈⇧bonus Es0,a0∼⇢n

cov
[Q⇡(s0, a0; r + bn)]. The idea is that PC-PG can effectively optimize over

the region where ⇢ncov has coverage. Furthermore, by construction of the bonus, the algorithm is
encouraged to escape the current region of coverage.

Reward bonus construction. At each episode n, PC-PG maintains an estimate of feature covari-
ance of the policy cover ⇢ncov (Line 5 of Algorithm 2). Next we use this covariance matrix to identify

2For infinite dimensions, the more general notion of relative condition number is required, but minimum
eigenvalue provides reasonable intuition and is sufficient in the finite dimensional case.

4

Algorithm 3 Natural Policy Gradient (NPG) Update
1: Input ⇢ncov, bn, learning rate ⌘, sample size M for critic fitting, iterations T
2: Define K

n = {s : ∀a ∈ A, bn(s, a) = 0}
3: Initialize policy ⇡0 : S → �(A), such that

⇡0(·|s) =

{
Uniform(A) s ∈ K

n

Uniform({a ∈ A : bn(s, a) > 0}) s *∈ K
n.

4: for t = 0 → T − 1 do
5: Draw M i.i.d samples

{
si, ai, Q̂⇡

t

(si, ai; r + bn)
}M

i=1
with si, ai ∼ ⇢ncov (see Alg 1)

6: Critic fit:

✓t = argmin
‖✓‖≤W

M∑

i=1

(
✓ · �(si, ai) −

(
Q̂⇡

t

(si, ai; r + bn) − bn(si, ai)
))2

7: Actor update

⇡t+1(·|s) ∝ ⇡t(·|s) exp
(
⌘

(
bn(s, ·) + ✓t · �(s, ·)

)
1{s ∈ K

n
}
)

(4)

8: end for
9: return ⇡ := argmax

⇡∈{⇡0,...,⇡T�1} V
⇡(s0; r + bn)

state-action pairs which are adequately covered by ⇢ncov, inspired by prior policy optimization results
for linear function approximation as mentioned before. The goal of the reward bonus is to identify
state, action pairs whose features are less explored by ⇢ncov and incentivize visiting them. The bonus
bn(s, a) defined in Eq 2 achieves this. If ⌃̂n

cov has a small eigenvalue along �(s, a), then we assign the
largest possible reward-to-go (i.e., 1/(1− �)) for this (s, a) pair to encourage exploration.3 Note that
reward bonus is only explicitly computed on states along the trajectory roll-outs during the execution
of the algorithm (see Algorithm 3).

Policy Optimization. With the bonus, we update the policy via T steps of natural policy gradi-
ent (Algorithm 3). In the NPG update, we first approximate the value function Q⇡

t

(s, a; r + bn)
under the policy cover ⇢ncov (line 6). Specifically, we use linear function approximator to approxi-
mate Q⇡

t

(s, a; r + bn) − bn(s, a) via constrained linear regression (line 6), and then approximate
Q⇡

t

(s, a; r + bn) by adding bonus back: Q
t

bn(s, a) := bn(s, a) + ✓t · �(s, a), Note that the error of
Q

t

bn(s, a) to Q⇡
t

(s, a; r + bn) is simply the prediction error of ✓t · �(s, a) to the regression target
Q⇡

t

(s, a; r + bn) − bn. The purpose of structuring the value function estimation this way, instead
of directly approximating Qt(s, a; r + bn) with a linear function, for instance, is that the regression
problem defined in line 6 will have a good linear solution for the special case linear MDPs, while
we cannot guarantee the same for Qt(s, a; r + bn) due to the non-linearity of the bonus. We then
use the critic Q

t

bn for updating policy (Eq. (4)). These are the exponential gradient updates (as in
[3, 33]), but are constrained for s ∈ K

n (see line 2 for the definition of Kn). The initialization and
the update ensure that ⇡t chooses actions uniformly from {a : bn(s, a) > 0} ⊆ A at any state s with
|{a : bn(s, a) > 0}| > 0 (the policy is restricted to act uniformly among positive bonus actions). Our
policy update ensures that for any state s, ⇡t+1 is not that different from ⇡t. Similar to CPI [34] and
PSDP [10], such incremental policy update is the key to the robustness in model-misspecification
that goes beyond the worst case `∞ assumption, which we discuss in detail in Sec. 4

4 Theory

We first state sample complexity results for linear MDPs. We then demonstrate the robustness of
PC-PG to model misspecification. We show that in state aggregation, error incurred is only an average
model error from aggregation averaged over the fixed comparator’s abstracted state distribution.

3For an infinite dimensional RKHS, the bonus can be computed in the dual using the kernel trick (e.g., [66]).

5

For more general agnostic setting we show that our algorithm is robust to model-misspecification
which is measured in a new concept of transfer error introduced by [3] recently. In Appendix G, we
further provide model-misspecification examples and show why most prior approaches fail due to the
delusional bias of Bellman backups under function approximation and model misspecification [42].

4.1 Well specified case: Linear MDPs in RKHS

We directly work on linear MDPs in a general Reproducing Kernel Hilbert space (RKHS).
Definition 4.1 (Linear MDP in RKHS). Let H be an RKHS, and define a feature mapping � :
S × A → H. An MDP (S,A, P, r, �, s0) is called a linear MDP if the reward function lives in
H: r(s, a) = 〈✓,�(s, a)〉H, and the transition operator P (s′

|s, a) also lives in H: P (s′
|s, a) =

〈µ(s′),�(s, a)〉H for all (s, a, s′). Denote µ as a matrix whose each row corresponds to µ(s).
We assume the parameter norms4 are bounded as ‖✓‖ ≤ !, ‖v(µ‖ ≤ ⇠ for all v ∈ R|S| with
‖v‖∞ ≤ 1, sup

s,a
‖�(s, a)‖ ≤ 1. we assume that the initial state s0 has lower bounded non-zero

norm mina∈A ‖�(s0, a)‖ ≥ c0 ∈ (0, 1] (other states could have arbitrarily small norms).

As our feature vector � could be infinite dimensional, to measure the sample complexity, we define
the maximum information gain of the underlying MDP M. First, denote the covariance matrix of any
policy ⇡ as ⌃⇡ = E(s,a)∼d⇡

[
�(s, a)�(s, a)(]

.We define the maximum information gain below:

Definition 4.2 (Maximum Information Gain IN (�)). We define the maximum information gain as:
IN (�) := max{⇡i}N�1

i=0
log det

(
1
�

∑
N−1
i=0 ⌃⇡

i

+ I
)

, where � ∈ R+.

Remark 4.1. This quantity is identical to the maximum information gain in Gaussian Process bandits
[59] from a Bayesian perspective. A related quantity occurs in a more restricted linear MDP model
[69]. Note that when �(s, a) ∈ Rd, we have that log det

(∑
n

i=1 ⌃
⇡
i

/�+ I
)

≤ d log(nB2/�+ 1)

assuming ‖�(s, a)‖2 ≤ B, which means that the information gain is always at most Õ(d).
Theorem 4.1 (Sample Complexity of PC-PG for Linear MDPs). Fix ✏, � ∈ (0, 1) and an arbitrary
comparator policy ⇡? (not necessarily an optimal policy). Suppose that M is a linear MDP
(4.1). There exists a setting of the parameters such that PC-PG uses a number of samples at most
poly

(
1

1−�
, log(A), 1

✏
, IN (1),!, ⇠, ln

(
1
�

))
and, with probability greater than 1− �, returns a policy

⇡̂ such that V ⇡̂(s0) ≥ V ⇡
?

(s0) − ✏.

A few remarks are in order:
Remark 4.2. For tabular MDPs, as � is a |S||A| indictor vector, the theorem above immediately
extends to tabular MDPs with IN (1) being replaced by |S|A| log(N + 1).
Remark 4.3. In contrast with LSVI-UCB [32], PC-PG works for infinite dimensional � with a
polynomial dependency on the maximum information gain IN (1).

Instead of proving Theorem 4.1 directly, we will state and prove a general theorem of PC-PG for gen-
eral MDPs with model-misspecification measured in a new concept transfer error (Assumption 4.1)
introduced by [3] in Section 4.3. Theorem 4.1 can be understood as a corollary of a more general
agnostic theorem (Theorem 4.3). Detailed proof of Theorem 4.1 is included in Appendix E.

4.2 State-Aggregation under Model Misspecification

Consider a simple model-misspecified setting where the model error is introduced due to state action
aggregation. Suppose we have an aggregation function � : S×A → Z , where Z is a finite categorical
set, the “state abstractions”, which we typically think of as being much smaller than the (possibly
infinite) number of state-action pairs. Intuitively, we aggregate state-action pairs that have similar
transitions and rewards to an abstracted state z. This aggregation introduces model-misspecification.
Definition 4.3. We define model-misspecification ✏z for any z ∈ Z as

✏z := max
(s,a),(s0,a0) s.t. �(s,a)=�(s0,a0)=z

{
‖P (·|s, a) − P (·|s′, a′)‖1 , |r(s, a) − r(s′, a′)|

}
.

4The norms are induced by the inner product in the Hilbert space H, unless stated otherwise.

6

The model-misspecification measures the maximum possible disagreement in terms of transition and
rewards of two state-action pairs which are mapped to the same abstracted state.

The folklore result is that with the definition ‖✏misspec‖∞ := maxz∈Z ✏z , algorithms such as
UCB and Q-learning, and regular policy gradient [52] succeed with an additional additive error of
‖✏misspec‖∞/(1 − �)2, and will have sample complexity guarantees that are polynomial in only
|Z|. Interestingly, see [22, 40, 52] for conditions limited to only Q? are still global in nature. The
following theorem shows PC-PG only requires a more local guarantee where our aggregation needs
to be only good under the distribution of abstracted states where an optimal policy tends to visit.
Theorem 4.2 (Misspecified, State-Aggregation Bound). Fix ✏, � ∈ (0, 1). Let ⇡? be an arbitrary
comparator policy. There exists a setting of the parameters such that PC-PG (Algorithm 2) uses
a total number of samples at most poly

(
|Z|, log(A), 1

1−�
, 1
✏
, ln

(
1
�

))
and, with probability greater

than 1 − �, returns a policy ⇡̂ such that, V ⇡̂(s0) ≥ V ⇡
?

(s0) − ✏ − 2E
s⇠d⇡

? maxa[✏�(s,a)]
(1−�)3 .

Here, it could be that Es∼d⇡? maxa[✏�(s,a)] / ‖✏misspec‖∞ due to that our error notion is an average
case one under the comparator. We refer readers to Appendix F for detailed proof of the above
theorem which can also be regarded as a corollary of a more general agnostic theorem (Theorem 4.3)
that we present in the next section. Note that here we pay an additional 1/(1 − �) factor in the
approximation error due to the fact that after reward bonus, we have r(s, a)+bn(s, a) ∈ [0, 1/(1−�)].
5 One point worth reflecting on is how few guarantees there are in the more general RL setting
(beyond dynamic programming), which address model-misspecification beyond global `∞ bounds.
Our conjecture is that this is not merely an analysis issue but an algorithmic one, where incremental
algorithms such as PC-PG are required for strong misspecified algorithmic guarantees. We return to
this point in Appendix G, with an example showing why this might be the case.

4.3 Agnostic Guarantees with Bounded Transfer Error

We now consider a general MDP in this section, where we do not assume the linear MDP modeling
assumptions hold. As Q−bn may not be linear with respect to the given feature �, we need to consider
model misspecification due to the linear function approximation with features �. We use the new
concept of transfer error from [3] below. We use the shorthand notation: Qt

bn
(s, a) = Q⇡

t

(s, a; r+bn)
below. We capture model misspecification using the following assumption.
Assumption 4.1 (Bounded Transfer Error). With respect to a target function f : S × A → R, define
the critic loss function L(✓; d, f) with d ∈ �(S × A) as: L (✓; d, f) := E(s,a)∼d (✓ · �(s, a) − f)2,
which is the square loss of using the critic ✓ ·� to predict a given target function f , under distribution
d. Consider an arbitrary comparator policy ⇡? (not necessarily an optimal policy) and denote the
state-action distribution d?(s, a) := d⇡

?

(s) ◦ UnifA(a). For all episode n and all iteration t inside
episode n, define: ✓t

?
∈ argmin‖✓‖≤W

L (✓; ⇢ncov, Q
t

bn
− bn). Then we assume that (when running

Algorithm 2), ✓t
?

has a bounded prediction error when transferred to d? from ⇢ncov; more formally:

L
(
✓t
?
; d?, Qt

bn − bn
)

≤ ✏bias ∈ R+.

Note that the transfer error ✏bias measures the prediction error, at episode n and iteration t, of a best
on-policy fit Q

t

bn(s, a) := bn(s, a) + ✓t
?
· �(s, a) measured under a fixed distribution d? from the

fixed comparator (note d? is different from the training distribution ⇢ncov hence the name transfer).

This assumption first appears in the recent work of Agarwal et al. [3] in order to analyze NPG under
linear function approximation. This is a milder notion of model misspecification than `∞-variants
more prevalent in the literature, as it is an average-case quantity which can be significantly smaller in
favorable cases. With the above assumption on the transfer error, the next theorem states an agnostic
result for the sample complexity of PC-PG:
Theorem 4.3 (Agnostic Guarantee of PC-PG). Fix ✏, � ∈ (0, 1) and consider an arbitrary comparator
policy ⇡? (not necessarily an optimal policy). Assume Assumption 4.1 holds, and sup

s,a
‖�(s, a)‖ ≤

1, and sup
a

‖�(s0), a‖ ≥ c0 ∈ (0, 1]. There exists a setting of the parameters (�,�,K,M, ⌘, N, T)

5We note that instead of using reward bonus, we could construct absorbing MDPs to make rewards scale
[0, 1]. This way we will pay 1/(1� �)2 in the approximation error instead.

7

…...

…...

…...

…...

…...

…...

optimal
reward

suboptimal
reward

chain 1

chain 2

Algorithm Horizon
2 5 10 15

PPO 1.0 0.0 0.0 0.0
PPO+RND 0.75 0.40 0.50 0.55

PC-PG 1.0 1.0 1.0 1.0

Figure 1: Left panel shows the Bidirectional Diabolical Combination Lock domain (see text for
details). Right panel shows success rate of different algorithms averaged over 20 different seeds.

such that PC-PG uses a number of samples at most poly
(

1
1−�

, log(A), 1
✏
, IN (1),W, ln

(
1
�

))
and,

with probability greater than 1− �, returns a policy ⇡̂ such that V ⇡̂(s0) ≥ V ⇡
?

(s0)− ✏−
√
2A✏bias

1−�
.

The precise polynomial of the sample complexity, along with the settings of all the hyperparameters
— � (threshold for bonus), �, K (samples for estimating cover’s covariance), M (samples for fitting
critic), ⌘ (learning rate in NPG), N (number of episodes), and T (number of NPG iterations per
episode) — is provided in Theorem D.1 (Appendix D), where we discuss two examples of �—finite
dimensional � ∈ Rd, and infinite dimensional � in RKHS with RBF kernel (Remark D.1).

For well-specified cases such as tabular MDPs and linear MDPs, due to Q⇡(·, ·; r + bn) − bn is
always a linear function with respect to the features, one can easily show that ✏bias = 0 (which we
show in Appendix E), as one can pick the best on-policy fit ✓t

?
to be the exact linear representation of

Q⇡(s, a; r+bn)−bn(s, a). Further, in the state-aggregation example, we can show that ✏bias is upper
bounded by the expected model-misspecification with respect to the comparator policy’s distribution
(Appendix F). We refer readers to [3] for detailed discussion with respect to the comparison of
transfer error and usual concentrability assumptions [3, 34, 53].

5 Experiments
We provide experiments illustrating PC-PG’s performance on problems requiring exploration, and
focus on showing the algorithm’s flexibility to leverage existing policy gradient algorithms with
neural networks (e.g., PPO [56]). Specifically, we show that for challenging exploration tasks, our
algorithm combined with PPO significantly outperforms both vanilla PPO as well as PPO augmented
with the popular RND exploration bonus [16]. For all experiments, we use policies parameterized
by fully-connected or convolutional neural networks. We use a kernel �(s, a) to compute bonus
as b(s, a) = �(s, a)(⌃̂−1

cov�(s, a), where ⌃̂cov is the empirical covariance matrix of the policy cover.
In order to prune any redundant policies from the cover, we use a rebalancing scheme to select
a policy cover which induces maximal coverage over the state space. This is done by finding
weights ↵(n) = (↵(n)

1 , ...,↵(n)
n) on the simplex at each episode which solve the optimization problem:

↵(n) = argmax
↵
log det

[∑
n

i=1 ↵i⌃̂i

]
where ⌃̂i is the empirical covariance matrix of ⇡i. Details

of the implemented algorithm, network architectures and kernels can be found in Appendix I.

Bidirectional Diabolical Combination Lock We first provide experiments on an exploration
problem designed to be particularly difficult: the Bidirectional Diabolical Combination Lock (a
harder version of the problem in [43], see Figure 1). In this problem, the agent starts at an initial
state s0 (left most state), and based on its first action, transitions to one of two combination locks
of length H . Each combination lock consists of a chain of length H , at the end of which are two
states with high reward. At each level in the chain, 9 out of 10 actions lead the agent to a dead
state (black) from which it cannot recover and lead to zero reward. The problem is challenging for
exploration for several reasons: (1) Sparse positive rewards: Uniform exploration has a 10−H chance
of reaching a high reward state; (2) Dense antishaped rewards: The agent receives a reward of −1/H
for transitioning to a good state and 0 to a dead state. A locally optimal policy is to transition to
a dead state quickly; (3) Forgetting: At the end of one of the locks, the agent receives a maximal
reward of +5, and at the end of the other lock it receives a reward of +2. Since there is no indication
which lock has the optimal reward, agent needs to remember to visit both chains. For both the policy
network input and the kernel we used a binary vector encoding the current lock, state and time step

8

Agent
start location

Policy 1 Policy 4 Policy 5 Policy 11 Policy 12

Figure 2: Different policies’ trajectory (green) in the policy cover for the maze environment.

as one-hot components. We compared to two other methods: a PPO agent, and a PPO agent with a
RND exploration bonus, all of which used the same representation as input.

Figure 1 shows the PPO agent succeeds for the shortest problem of horizon H = 2. The PPO+RND
agent succeeds roughly 50% of the time: it avoids the local minimum and explores to the end of one
of the chains. However the agent’s policy quickly becomes deterministic and the agent forgets to go
back and explore the other chain after it has reached the reward at the end of the first (as shown in
Figure 5 (a)), PC-PG succeeds over all seeds and horizon lengths. We found that the policy cover
provides near uniform coverage over both chains (see Figure 5 (b)).

Figure 3: Results for maze (left) & control (right).

Reward-free Exploration in Mazes We
evaluated PC-PG in a reward-free setting us-
ing maze environments adapted from [46].
The agent’s observation consists of an RGB-
image of the maze with the red channel rep-
resenting the walls and the green channel
representing the location of the agent (an ex-
ample is shown in Figure 2). We compare
PC-PG, PPO and PPO+RND where the agent
receives a constant environment reward of 0
(note that PPO receives zero gradient; PC-PG and PPO+RND learn from their reward bonus). Figure
3 (left) shows the percentage of locations in the maze visited by each of the agents over the course of
10 million steps. The proportion of states visited by the PPO agent stays relatively constant, while
the PPO+RND agent is able to explore to some degree. PC-PG quickly visits a significantly higher
proportion of locations. Visualizations of traces from policies can be seen in Figure 2.

Continuous Control We further evaluated PC-PG on continuous control MountainCar from Ope-
nAI Gym [15]. Note here actions are continuous in [−1, 1] and incur a small negative reward. Since
the agent only receives a large reward (+100) if it reaches the top of the hill, a locally optimal
policy is to do nothing (e.g., PPO never escapes this local optimality in our experiments). Results for
PPO, PPO+RND and PC-PG are shown in Figure 3(right). The PPO agent quickly learns the locally
optimal policy. The PPO+RND agent exhibits wide variability across seeds: some seeds solve the
task while others not. The PC-PG agent consistently discovers a good policy across all seeds. In
Figure 6, we show the traces of policies in the policy cover constructed by PC-PG.

6 Discussion
This work proposes a new policy gradient algorithm for balancing the exploration-exploitation
tradeoff in RL, which enjoys provable sample efficiency guarantees in the linear and kernelized
settings. Our experiments provide evidence that the algorithm can be combined with neural policy
optimization methods and be effective in practice. An interesting direction for future work would be
to combine our approach with feature learning [4]. in rich observation settings to learn a good feature
representation.

9

Broader Impact

This paper provides a provably efficient policy gradient algorithm. Though the nature of the paper
is mostly theoretical and the paper heavily focuses on understanding the theoretical foundations
of one of the most popular RL algorithms, i.e., policy gradient, we believe that our theoretical
findings and the proposed new algorithm will have a broader impact on the society. Due to the high
sample complexity of existing PG methods, they are often limited to applications related to video
games. We believe that by providing global optimality and sample efficiency to PG methods, we will
significantly broaden the application scope of PG methods. Specifically, our work potentially could
enable PG methods to be deployed in real-world applications such as precision medicine, human
robot interaction, and personalized eduction systems where safety and robustness are critical.

Acknowledgments and Disclosure of Funding

Part of the work was done when MH and WS were at Microsoft Research NYC. The authors would
like to thank Andrea Zanette, Ching-An Cheng, and Xuezhou Zhang for carefully reviewing the
proofs, and Akshay Krishnamurthy for helpful discussions. Sham Kakade gratefully acknowledges
funding from the ONR award N00014-18-1-2247, and NSF Awards CCF-1703574 and CCF-1740551.

References
[1] Y. Abbasi-Yadkori, P. Bartlett, K. Bhatia, N. Lazic, C. Szepesvari, and G. Weisz. Politex: Regret

bounds for policy iteration using expert prediction. In International Conference on Machine
Learning, pages 3692–3702, 2019.

[2] Y. Abbasi-Yadkori, N. Lazic, C. Szepesvari, and G. Weisz. Exploration-enhanced politex. arXiv
preprint arXiv:1908.10479, 2019.

[3] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. On the theory of policy gradient methods:
Optimality, approximation, and distribution shift, 2019.

[4] A. Agarwal, S. Kakade, A. Krishnamurthy, and W. Sun. Flambe: Structural complexity and
representation learning of low rank mdps. arXiv preprint arXiv:2006.10814, 2020.

[5] S. Agrawal and R. Jia. Optimistic posterior sampling for reinforcement learning: worst-case
regret bounds. In Advances in Neural Information Processing Systems, pages 1184–1194, 2017.

[6] A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learning, 71(1):
89–129, 2008.

[7] A. Ayoub, Z. Jia, C. Szepesvári, M. Wang, and L. F. Yang. Model-based reinforcement learning
with value-targeted regression. abs/2006.01107, 2020. URL https://arxiv.org/abs/2006.

01107.

[8] M. G. Azar, V. Gómez, and H. J. Kappen. Dynamic policy programming. J. Mach. Learn. Res.,
13(1), Nov. 2012. ISSN 1532-4435.

[9] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
263–272. JMLR. org, 2017.

[10] J. A. Bagnell, S. M. Kakade, J. G. Schneider, and A. Y. Ng. Policy search by dynamic pro-
gramming. In S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances in Neural Information
Processing Systems 16, pages 831–838. MIT Press, 2004.

[11] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
1471–1479. Curran Associates, Inc., 2016.

10

https://arxiv.org/abs/2006.01107
https://arxiv.org/abs/2006.01107

[12] J. Bhandari and D. Russo. Global optimality guarantees for policy gradient methods. CoRR,
abs/1906.01786, 2019. URL http://arxiv.org/abs/1906.01786.

[13] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

[14] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. The Journal of Machine Learning Research, 3:213–231, 2003.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI gym. arXiv preprint arXiv:1606.01540, 2016.

[16] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
In International Conference on Learning Representations, 2019. URL https://openreview.

net/forum?id=H1lJJnR5Ym.

[17] Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient exploration in policy optimization.
arXiv preprint arXiv:1912.05830, 2020.

[18] J. Chen and N. Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pages 1042–1051, 2019.

[19] V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback.
In COLT, pages 355–366, 2008.

[20] C. Dann and E. Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning.
In Advances in Neural Information Processing Systems, pages 2818–2826, 2015.

[21] C. Dann, N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. On polyno-
mial time PAC reinforcement learning with rich observations. arXiv preprint arXiv:1803.00606,
2018.

[22] S. Dong, B. Van Roy, and Z. Zhou. Provably efficient reinforcement learning with aggregated
states. arXiv preprint arXiv:1912.06366, 2019.

[23] S. S. Du, Y. Luo, R. Wang, and H. Zhang. Provably efficient q-learning with function ap-
proximation via distribution shift error checking oracle. arXiv preprint arXiv:1906.06321,
2019.

[24] Y. Efroni, L. Shani, A. Rosenberg, and S. Mannor. Optimistic policy optimization with bandit
feedback. arXiv preprint arXiv:2002.08243, 2020.

[25] E. Even-Dar, S. M. Kakade, and Y. Mansour. Online Markov decision processes. Mathematics
of Operations Research, 34(3):726–736, 2009.

[26] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi. Global convergence of policy gradient
methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039, 2018.

[27] M. Geist, B. Scherrer, and O. Pietquin. A theory of regularized markov decision processes.
arXiv preprint arXiv:1901.11275, 2019.

[28] M. Henaff. Explicit explore-exploit algorithms in continuous state spaces. In Advances in
Neural Information Processing Systems, pages 9377–9387, 2019.

[29] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[30] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision
processes with low Bellman rank are PAC-learnable. In International Conference on Machine
Learning, 2017.

[31] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient? In Advances
in Neural Information Processing Systems, pages 4863–4873, 2018.

11

http://arxiv.org/abs/1906.01786
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

[32] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with
linear function approximation. arXiv preprint arXiv:1907.05388, 2019.

[33] S. Kakade. A natural policy gradient. In NIPS, 2001.

[34] S. Kakade and J. Langford. Approximately Optimal Approximate Reinforcement Learning.
In Proceedings of the 19th International Conference on Machine Learning, volume 2, pages
267–274, 2002.

[35] S. M. Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of
College London, 2003.

[36] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
Learning, 49(2-3):209–232, 2002.

[37] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pages 1008–1014, 2000.

[38] T. Lattimore and M. Hutter. Near-optimal pac bounds for discounted mdps. volume 558, pages
125–143. Elsevier, 2014.

[39] T. Lattimore and M. Hutter. Near-optimal pac bounds for discounted mdps. Theoretical
Computer Science, 558:125–143, 2014.

[40] L. Li. A unifying framework for computational reinforcement learning theory. PhD thesis,
Rutgers, The State University of New Jersey, 2009.

[41] B. Liu, Q. Cai, Z. Yang, and Z. Wang. Neural proximal/trust region policy optimization attains
globally optimal policy. CoRR, abs/1906.10306, 2019. URL http://arxiv.org/abs/1906.

10306.

[42] T. Lu, D. Schuurmans, and C. Boutilier. Non-delusional q-learning and value-iteration. In
Advances in neural information processing systems, pages 9949–9959, 2018.

[43] D. Misra, M. Henaff, A. Krishnamurthy, and J. Langford. Kinematic state abstraction and
provably efficient rich-observation reinforcement learning. In International conference on
machine learning, 2020.

[44] R. Munos. Error bounds for approximate value iteration. 2005.

[45] G. Neu, A. Jonsson, and V. Gómez. A unified view of entropy-regularized markov decision
processes. CoRR, abs/1705.07798, 2017.

[46] J. Oh, S. Singh, and H. Lee. Value prediction network. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 6118–6128. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7192-value-prediction-network.pdf.

[47] I. Osband, B. Van Roy, and Z. Wen. Generalization and exploration via randomized value
functions. arXiv preprint arXiv:1402.0635, 2014.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[49] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In ICML, 2017.

12

http://arxiv.org/abs/1906.10306
http://arxiv.org/abs/1906.10306
http://papers.nips.cc/paper/7192-value-prediction-network.pdf

[50] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing min-
imization with randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages
1313–1320. Curran Associates, Inc., 2009. URL http://papers.nips.cc/paper/

3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning.

pdf.

[51] D. Russo. Worst-case regret bounds for exploration via randomized value functions. In Advances
in Neural Information Processing Systems, pages 14410–14420, 2019.

[52] D. Russo. Approximation benefits of policy gradient methods with aggregated states. arXiv
preprint arXiv:2007.11684, 2020.

[53] B. Scherrer. Approximate policy iteration schemes: A comparison. In Proceedings of the
31st International Conference on International Conference on Machine Learning - Volume 32,
ICML’14. JMLR.org, 2014.

[54] B. Scherrer and M. Geist. Local policy search in a convex space and conservative policy iteration
as boosted policy search. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 35–50. Springer, 2014.

[55] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International Conference on Machine Learning, pages 1889–1897, 2015.

[56] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[57] Z. Shangtong. Modularized implementation of deep rl algorithms in pytorch. https://github.
com/ShangtongZhang/DeepRL, 2018.

[58] L. Shani, Y. Efroni, and S. Mannor. Adaptive trust region policy optimization: Global conver-
gence and faster rates for regularized mdps, 2019.

[59] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: no regret and experimental design. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, pages 1015–1022, 2010.

[60] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pages
881–888. ACM, 2006.

[61] W. Sun, N. Jiang, A. Krishnamurthy, A. Agarwal, and J. Langford. Model-based rl in contextual
decision processes: Pac bounds and exponential improvements over model-free approaches. In
Conference on Learning Theory, pages 2898–2933, 2019.

[62] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems, volume 99, pages 1057–1063, 1999.

[63] C. Szepesvári and R. Munos. Finite time bounds for sampling based fitted value iteration. In
Proceedings of the 22nd international conference on Machine learning, pages 880–887. ACM,
2005.

[64] I. Szita and C. Szepesvári. Model-based reinforcement learning with nearly tight exploration
complexity bounds. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 1031–1038, 2010.

[65] J. A. Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 8(1-2):1–230, 2015.

[66] M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time analysis of kernelised
contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

[67] Z. Wen and B. Van Roy. Efficient exploration and value function generalization in deterministic
systems. In Advances in Neural Information Processing Systems, pages 3021–3029, 2013.

13

http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning.pdf
http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning.pdf
http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning.pdf
https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL

[68] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

[69] L. F. Yang and M. Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and
regret bound. arXiv preprint arXiv:1905.10389, 2019.

[70] L. F. Yang and M. Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pages 6995–7004, 2019.

[71] A. Zanette, D. Brandfonbrener, E. Brunskill, M. Pirotta, and A. Lazaric. Frequentist regret
bounds for randomized least-squares value iteration. In S. Chiappa and R. Calandra, editors,
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learning Research, pages 1954–1964, Online,
26–28 Aug 2020. PMLR.

[72] D. Zhou, J. He, and Q. Gu. Provably efficient reinforcement learning for discounted mdps with
feature mapping. arXiv preprint arXiv:2006.13165, 2020.

[73] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
928–936, 2003.

14

	Introduction
	Setting
	The PC-PG Algorithm
	Theory
	Well specified case: Linear MDPs in RKHS
	State-Aggregation under Model Misspecification
	Agnostic Guarantees with Bounded Transfer Error

	Experiments
	Discussion
	Additional Related Work
	NPG Analysis (Algorithm 3)
	Set up of Augmented MDPs
	Performance of NPG (Algorithm 3) on the Augmented MDP Mn

	Relationship between Mn and M
	Analysis of PC-PG for the Agnostic Setting (Theorem 4.3)
	Proof of Theorem D.1

	Analysis of PC-PG for Linear MDPs (Theorem 4.1)
	Analysis of PC-PG for State-Aggregation (Theorem 4.2)
	Robustness to ``Delusional Bias'' with Partially Well-specified Models
	Auxiliary Lemmas
	Experimental Details
	Algorithm Implementation
	Environments
	Bidirectional Diabolical Combination Lock
	Mountain Car
	Mazes

	Additional Figures
	Hyperparameters

